CLASS-BASED AFFINITY PROPAGATION FOR HYPERSPECTRAL IMAGE DIMENSIONALITY REDUCTION AND IMPROVEMENT OF MAXIMUM LIKELIHOOD CLASSIFICATION ACCURACY

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyperspectral image classification based on volumetric texture and dimensionality reduction

A novel approach using volumetric texture and reduced-spectral features is presented for hyperspectral image classification. Using this approach, the volumetric textural features were extracted by volumetric gray-level co-occurrence matrices (VGLCM). The spectral features were extracted by minimum estimated abundance covariance (MEAC) and linear prediction (LP)-based band selection, and a semi-...

متن کامل

application of upfc based on svpwm for power quality improvement

در سالهای اخیر،اختلالات کیفیت توان مهمترین موضوع می باشد که محققان زیادی را برای پیدا کردن راه حلی برای حل آن علاقه مند ساخته است.امروزه کیفیت توان در سیستم قدرت برای مراکز صنعتی،تجاری وکاربردهای بیمارستانی مسئله مهمی می باشد.مشکل ولتاژمثل شرایط افت ولتاژواضافه جریان ناشی از اتصال کوتاه مدار یا وقوع خطا در سیستم بیشتر مورد توجه می باشد. برای مطالعه افت ولتاژ واضافه جریان،محققان زیادی کار کرده ...

15 صفحه اول

An Assessment of the Impact of Dimensionality Reduction on the Speed and Accuracy of Hyperspectral Image Classification

This paper investigates the extent to which the accuracy and speed of classifying Hyperspectral remote sensing images are affected by the application of varying degrees of dimensionality reduction. Three methods have been used for dimensionality reduction: PCA, ICA and random band selection; SVM has been used for classification. The results have been evaluated on both natural and man-made scena...

متن کامل

An Assessment of the Impact of Dimensionality Reduction on the Speed and Accuracy of Hyperspectral Image Classification

This paper investigates the extent to which the accuracy and speed of classifying Hyperspectral remote sensing images are affected by the application of varying degrees of dimensionality reduction. Three methods have been used for dimensionality reduction: PCA, ICA and random band selection; SVM has been used for classification. The results have been evaluated on both natural and man-made scena...

متن کامل

Dimensionality Reduction and Classification of Hyperspectral Images using Genetic Algorithm

This paper presents genetic algorithm based band selection and classification on hyperspectral image data set. Hyperspectral remote sensors collect image data for a large number of narrow, adjacent spectral bands. Every pixel in hyperspectral image involves a continuous spectrum that is used to classify the objects with great detail and precision. In this paper, first filtering based on 2-D Emp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Boletim de Ciências Geodésicas

سال: 2019

ISSN: 1982-2170,1413-4853

DOI: 10.1590/s1982-21702019000100004